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We study a computer-simulation model for driven particles on a discrete lattice where a fraction p of
the lattice sites is randomly occupied by frozen impurities (barriers), and an imposed bias governs the
particles’ hopping through the lattice. These particles (the carriers) are initially released from a source
of wetting fluid from one end of the lattice in order to wet and the dry lattice on their trails. We study
the transport of particles, frontier of their trail, and the growth of the interface between the wet and dry
regions as a function of the biased field and the number of carriers. The rms displacements of carriers
(R,;) and that of their center of mass (R, ,, ) show power-law behaviors with time ¢, with exponents de-
pending on the biased field. At the impurity concentration p=0.30 in two dimensions, we find that the
mean wetting front position R; moves with a power law R, ~t2> at low values of the biased field,
whereas it becomes pinned at higher values. The interface width grows with time to a maximum value

before relaxing to a saturation value.

PACS number(s): 05.40.+j, 05.70.Ln, 68.10.Gw, 68.35.Fx

Understanding the transport of particles in the pres-
ence of a biased field [1] and the growth of interface [2,3]
via models has attracted a considerable interest in recent
years. Growth of interface in deposition of particles
(pouring down on a substrate) [4—6] has been extensively
studied for a variety of rules regarding a trajectory of
particles and their sticking mechanisms. Attempts have
been made to relate the results of the computer simula-
tions for the kinetic exponents and scaling with experi-
ments such as the growth of materials, cracks in brittle
materials, fluid mixtures, wetting by imbibition, etc. [6,7].
Many issues regarding the relevance of various models
with respect to experiments, whether the agreement is ex-
cellent or poor, are still a subject of active interest. A
common difficulty with experiments, analytical theories,
and computer simulations is to make a connection be-
tween the experiments and models from their microscop-
ic description to the macroscopic observations. Howev-
er, one needs to investigate relevant models [6—20] that
help in understanding the global properties arising from
the microscopic details. In this article we attempt to
study such a model.

We consider a discrete lattice (a two-dimensional lat-
tice of size L, ><Ly here). One end of the lattice, say the
first column, is connected to a source of the wetting fluid,
i.e., the wetting fluid can emanate from each site of the
first column. However, the fluid flows into the dry lattice
only via mobile particles, which is a mechanism for the
controlled spreading of the fluid into the lattice. Initially,
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a fixed number N, of particles are placed randomly in the
first column. In this model of controlled spreading, N,
may vary from 1 to L, the size of that source column. A
fraction p of the lattice sites is randomly occupied by
quenched impurities which act as infinite barriers for the
particles transport. Thus, the particles are allowed to
move only on a fraction (1—p) of the remaining lattice
sites. In addition, a biased field is set up which governs
the hopping probabilities of the particles to their neigh-
boring sites. These probabilities along +x and *y direc-
tions are given by B, =(1%B)/4, where B is the bias
factor 0O<B <1, and By, :%_ From this distribution of
the biased field one expects an overall drift of each parti-
cle from the source to the bulk of the lattice along the
+x direction.

We implement the following procedure for moving the
particles and dragging the fluid. A particle at a site i is
selected randomly. One of its neighboring sites j is then
chosen according to the above-defined biased probabili-
ties. If site j is empty, then the particle is moved from
site i to site j, and site j becomes wet if it was dry; a wet
site remains permanently wet. If site j is forbidden (.e., if
it is an impurity site, or already occupied by another par-
ticle), then the particle remains at site i. An attempt to
move each particle once on average is defined as one
Monte Carlo step (MCS) (i.e., unit time). We use periodic
boundary conditions along the y direction and a reflecting
boundary condition at the source end along the x direc-
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tion. The length L, has been chosen in such a way that
no mobile particle can reach the end opposite the source
(i.e., the abscissa L,) during the simulation time of in-
terest. As the particles execute their stochastic motion,
the fluid spreads on their trail. At this point we would
like to mention that the irreversible wetting procedure
thus defined may also be viewed as the result of some
kind of radioactive marking or more generally as the
remanence of an everlasting polluting effect. For a fixed
biased probability B and a constant number of carriers
N, we carry out our simulation up to a fixed time. This
process is repeated for a large number of independent
samples with independent impurity distributions, in order
to obtain a reliable average estimate. In each sample, at a
given time step ¢, we call the ensemble of wet sites (one
per row) the “wetting front,” such that each of these sites
is, in the row it belongs, the wet site with the largest
abscissa. (This definition is conventional although it
neglects the possible presence of dry islands.) Within
each sample we evaluate the growth of the mean wetting
front position R £ the interface width W, the root-mean-
square (rms) displacement R of each particle, and the
rms displacement R of their center of mass, which are
defined as

R,= 1 g
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where x, is the farthest wet site in the ith row and
R, (x,t) and R, (x,t) refer to the x component of the
rms displacement of the tracers and that of their center of
mass, respectively, at time 7. Note that R, describes the
motion of each particle while R, ,, describes the collec-
tive motion of all particles as a function of time; a parti-
cle is also called a tracer and a carrier. The averaging is
then performed over all samples. From now on, all the
data reported here will take into account the sample
averaging. This model is different from a similar study
recently presented by Family and Pandey [14] where
effects of external bias, quenched barriers, and the varia-
tion in the number of carriers are not considered. We be-
lieve that incorporating these parameters in our model
makes our model more realistic particularly in the case of
imbibition experiments [7] such as the spreading of water
on a paper towel. Random distribution of the impurity
generates an inhomogeneous porous matrix of those sites
which are not occupied by the impurities and this may
capture some aspects of porous paper towel. The biased
field is equivalent to the pressure while a fixed number N,
of carriers models a controlled release of fluid. Although
this model does not capture all the details of the laborato-
ry experiments, it incorporates more relevant details than
the model presented in Ref. [14].

Figure 1 shows the variation of the mean wetting front
position R, versus time on a log-log scale for various
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values of N, and a biased field at a fixed impurity concen-
tration p =0.30. In the absence of impurities (p =0.00)
we should observe a linear power-law dependence of R

on ¢, i.e., Ry ~1, as expected for the biased diffusion [20].
At a constant biased field B ., =0.35 at p =0.30, we ob-
serve a power-law behavior with time, R f~tk with
k =~0.65+02 in the asymptotic regime for a small number
of carriers (N, =1,2,4,8) [Fig. 1(a)]. For N, =16, the ex-
ponent k remains in the same range in most of the time
regime (up to 50000 MCS). For a larger number of car-
riers, i.e., N, =25 and 50 with L, =50, we also observe an
excellent asymptotic power law with k ~0.65 [Fig. 1(b)].
However, for N, =25 with L, =25, we do not see quite as
linear a power-law dependence. We attribute this devia-
tion to the finite-size effects: the particles’ motion be-
comes more correlated (essentially due to hard-core
repulsion) on increasing the number of carriers. If the
correlation length becomes larger than the system’s
transverse size L,, then the finite-size effects become
more important. We would like to point out that in all
cases, the R versus ¢ plot on the log-log scale exhibits a
negative second derivative (i.e., curvature) which goes
slowly to zero for long times, making the evaluation of
the exponent k somewhat uneasy. One plausible a pos-

3
- _
o 10 0Eee0 1
=
1))
e}
a
—
[
o = 0.30, B= 0.35
Pt 2000X25(1
10 *? 2000X25(2
2000X25(4
c 4000X25(8
o] 4000X25(16)
o)
=
- .
3 4 5
10 1.0 10
Time

c
0 16
= rex 25
) 3 Holololk 50
10 71 namEn 05
o E kA 25
— B
c ]
) p = 0.30
— 4000X25(16
[ 8000X25(25
B8000X50(50

[ 8000X50(25
g 1 8000X50(25
=

10 2 A, A e

10 . 10
Time

FIG. 1. Mean front position vs time on a log-log scale at a
fixed impurity concentration p =0.30. Numbers in parentheses
are the values of the number of particles N,. Over 500 indepen-
dent samples were used for each curve. (a) N,=1,2,4,8, and
16 for the forward bias B, =0.35. (b) N, =16, 25, and 50 with
different lengths L, =25 and 50 for the forward bias B, =0.35
except the lowest curve, which is with B, , =0.40.
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teriori improvement would be to assume that
Ry~(2 —1,)* where t, is a relaxation (or transient) time.
In log(R)-log(z) coordinates, the corrections to a
straight line should be exponential. Due to statistical er-
rors, this possibility is hard to confirm and must be post-
poned to further studies. The asymptotic value of the ex-
ponent k decreases on increasing the bias, and becomes
zero at B, ,=0.50 when the wetting front is pinned by
the impurity barriers. Such pinning is also observed in
other biased growth models [16,17] as well as models for
fluid flow through porous media [18,19]; in Ref. [19], a
critical transition to depinning as a function of driving
force is emphasized.

The one-particle case (N,=1) deserves some com-
ments. Suppose we consider now a finite longitudinal
length [, and ask, how does the average first-passage time
T of the particle at the abscissa I, depend on B for fixed
values of other control parameters such as p, L, etc.?
Note that the limit B =0 corresponds to a purely
diffusive case, and a small positive value of B will result
in a faster walk in the +x direction. As B increases the
motion should become faster (i.e., the gain in time should
improve provided the temporary trapping of the particle
in a dead end does not occur frequently). At the opposite
extreme values of B (B —1), on the contrary, the particle
may become trapped for an extremely long time. At
B =1, even a very simple impurity cluster of the shape
“>” in front of the particles’ pathway will become ab-
sorbing; such an obstacle is liable to be encountered soon-
er or later if the sample is sufficiently large so that the
probability that the particle never reaches the abscissa I,
becomes nonzero. Therefore, at a fixed impurity concen-
tration, there exists (at least) one value B * of B which op-
timizes (i.e., minimizes) the first passage time of the parti-
cle at [,. At low values of the impurity concentration p,
B* isclose to 1. As p increases, B* decreases and B*—0
as p—(1—p_.)=0.41, i.e.,, when the concentration of the
empty sites reaches its percolation threshold.

The existence of an optimum value B* of the bias in
order to obtain the fastest traveling front of the particle
through the sample has some practical interest (i.e., ex-
traction of oil droplets through a porous medium) and, to
our knowledge, has never been accounted for previously
by a simple local mechanism. The main features of this
observation are still valid in the case where there are
many particles (or even, possibly, a constant feeding by
the source in order to replace the departing particles, al-
though in this case, collective pinning of the particles
may obscure the observation). The same arguments can
be extended to the mean front progression which reaches
its maximum speed for some optimum value of B as is
qualitatively observed in our simulations. For example,
k=0.50 at B=0.25, k=0.65 at B=0.35, k=0 at
B =0.50. A precise evaluation of B* at each impurity
concentration requires an enormous amount of computer
time which is out of reach at present. Furthermore, our

data indicate a deviation from the power-law dependence .

in a certain range of B and p (as we have seen above)
where the value of k may be meaningful only for the lead-
ing term in the variation of R r with z. Therefore, it is
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rather difficult to comment more quantitatively on the
characteristic value of B, beyond the qualitative level.

A similar analysis for the rms displacement of the par-
ticles and that of their center of mass is presented in Fig.
2; the x and y components are shown separately in Figs.
2(a) and 2(b), respectively. One might have expected that
the forward bias would affect only the x component of
the rms displacement; however, we observe that both the
x and y components of the motion are affected by the
biased field. At B, =0.35,p =0.30, we find a very good
power-law dependence of the x component of the rms dis-
placement of particles, R (x), and that of their center of
mass, R, (x) on t; the exponent k' for both R, (x) and
R, (x) in the asymptotic regime turns out to be about
0.60 [see Fig. 2(a)]. The magnitude of the exponent k’ de-
creases on increasing the forward bias (i.e., at
B, ,=0.40, k'=0.38 and k' vanishes at B, =0.50).
Note that the asymptotic exponent k’ for each particle on
average and for their collective transport is smaller than
that of the mean wetting front for the motion along the
+x direction. This means that the wetting (or fluid)
front which is the locus of the first-passage front is fol-
lowed by its carriers. An obvious part of this statement
consists in the observation that the center of mass of
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FIG. 2. (a) X component of the rms displacement of the par-
ticles R (X) and that of their center of mass R, (X) vs time
on a log-log plot. The numbers on the rightmost side are the
values of the forward bias B ,. The same statistics is used as in
Fig. 1. (b) Similar plot as (a) for the y components of the rms
displacements on a semilog scale.
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tracers is located, as it should be, behind the mean wet-
ting front location. However, a less trivial effect is
displayed by the fact that the ratio of these quantities, say
R, /R,,, behaves as t*~K with k—k’=~0.03 at
B,,=0.40, and should therefore go very slowly to
infinity as ¢ goes to infinity. We have not been able to
confirm this tendency because of the enormous CPU time
required. Even if this effect is transient and if Ry, /R,,,
should go to a constant value, the significance of the wet-
ting process involved is clear. It means that the wetting
front is created mainly by extreme and infrequent incur-
sions of tracers which promptly return to their mean lo-
cation area afterward.

The y component of the center of mass of the particles
seems to remain stable around zero [Fig. 2(b)]. The y
component of the rms displacement of each particle,
R, (y), on the other hand shows a systematic increase
with time. At B, =0.35, R, (y)~t*" with k"’ around 1
while at B, =0.40, k"' is about {. The concentration of
the allowed sites for the particles’ motion is 1—p =0.70
which is above the site percolation threshold (0.592). We
know [1] that the random-walk motion of a single parti-
cle is diffusive (with k'’ =1) above the percolation thresh-
old and anomalous (with k''=1) at the percolation
threshold. Since there is no biased field along the y direc-
tion, one would have expected a diffusive behavior for the
y component of the tracers’ rms displacement R (y).
Our data suggest a different type of driven diffusive trans-
port behavior along the y direction. Lower estimates of
k' at higher values of B, indicate that the bias field
affects the motion of the particles which become correlat-
ed in this model.

We have also studied the growth of the interface width
W (which is nothing but the mean wall thickness),
W2*=(R})—{(R;)* A typical variation of W versus ¢
on a log-log scale is shown in Fig. 3 for various sets of N,
at p =0.30, and B, =0.35 and 0.40. The width grows
with time and finally saturates (see Fig. 3). In fact the
time evolution of W clearly shows an overshooting before
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FIG. 3. Interface width vs time on a log-log scale with the
same statistics as in Fig. 1. The rightmost numbers are the
values of biased field in the + x direction.

the saturation is reached. However, this saturation value
W, is hard to evaluate with good accuracy due to its slow
approach in the long-time regime. We note that the satu-
ration width W seems independent of the number of car-
riers. The difference in saturation width for different
transverse lengths L, is evident; the lower curves are with
L,=25 while the upper curves correspond to L,=50.
Whether the wall thickness does indeed go to infinity as
L, goes to infinity is yet to be proved. Even if we assume
the size scaling W, ~Lf, an estimate of «, given the com-
paratively small number of sample widths used in this
study, seems out of reach at present.
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